Flux balance analysis predicts Warburg-like effects of mouse hepatocyte deficient in miR-122a
نویسندگان
چکیده
منابع مشابه
Flux balance analysis predicts Warburg-like effects of mouse hepatocyte deficient in miR-122a
The liver is a vital organ involving in various major metabolic functions in human body. MicroRNA-122 (miR-122) plays an important role in the regulation of liver metabolism, but its intrinsic physiological functions require further clarification. This study integrated the genome-scale metabolic model of hepatocytes and mouse experimental data with germline deletion of Mir122a (Mir122a-/-) to i...
متن کاملAnalysis of amino acid supplementation effects on hepatocyte cultures using flux balance analysis.
When cultured hepatocytes are exposed to challenging environments such as plasma, they frequently suffer a decline in liver-specific functions. Media supplements are sought to reduce or eliminate this effect. A rational design approach for amino acid supplementation in hepatocyte culture has been developed in our prior work, and designed amino acid supplementation (DAA) was found to increase ur...
متن کاملEffect of Mouse Liver Extract on in Vitro Differentiation of Amniotic Membrane Stem Cells into Hepatocyte-Like Cells
ABSTRACT Background and Objective: Multipotent placental amniotic membrane mesenchymal stem cells (MSCs) are capable of differentiating into specialized tissues under different conditions. The aim of this study was to induce differentiation of placental amniotic membrane MSCs from NMRI mouse into hepatocytes using liver extract. &nb...
متن کاملAdvances in flux balance analysis.
Biology is going through a paradigm shift from reductionist to holistic, systems-based approaches. The complete genome sequence for a number of organisms is available and the analysis of genome sequence data is proving very useful. Thus, genome sequencing projects and bioinformatic analyses are leading to a complete 'parts catalog' of the molecular components in many organisms. The next challen...
متن کاملFlux Balance Analysis of Ammonia Assimilation Network in E. coli Predicts Preferred Regulation Point
Nitrogen assimilation is a critical biological process for the synthesis of biomolecules in Escherichia coli. The central ammonium assimilation network in E. coli converts carbon skeleton α-ketoglutarate and ammonium into glutamate and glutamine, which further serve as nitrogen donors for nitrogen metabolism in the cell. This reaction network involves three enzymes: glutamate dehydrogenase (GDH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS Computational Biology
سال: 2017
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1005618